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Critical Behavior of the Specific Heat for Pure 
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The exponent c~ of the specific heat C is determined for the pure and the site-diluted 
simple cubic Ising model (concentration x = 0, 0.2, 0.4 of nonmagnetic sites) by 
a finite-size scaling analysis of the peak value Cma~(L) for systems of linear 
dimensions L = 8, 16, 32, and 64. The Cma~ values are obtained by the Ferrenberg- 
Swendsen algorithm, using Monte Carlo data from a fully-vectorized multi-spin 
coding program. We obtain ~ =0.11 for x = 0  and a crossover to a negative 
value upon dilution, with c~ = -0.029(4) both for x = 0.2 and x = 0.4. 
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The cri t ical  behav io r  of spin systems with r a n d o m  s t ruc tura l  d i sorder  has 
been under  deba te  for a lmos t  20 years. I t  has been p roved  r igorous ly  by 
Chayes  et al. (~) tha t  the cor re la t ion  exponen t  v for a very general  class of 
d i so rdered  systems obeys  the inequal i ty  v >1 2/d, where d is the d imens ion  
of the system, yielding with the hypersca l ing  re la t ion  c~ = 2 -  dv nonpos i t ive  
values of e. This implies tha t  the cri t ical  behav io r  of the 3D Ising mode l  is 
modif ied  by the in t roduc t ion  of  s t ruc tura l  disorder ,  because  the specific 
hea t  exponen t  of  the pure  mode l  is posit ive,  c~= 0.11. (2) 

Whereas  it is thus wel l -es tabl ished that  ~ of the d i sordered  3D Ising 
mode l  is nonposi t ive ,  no agreement  has been found concerning  the 
accura te  value of  c~. Different f ie ld- theoret ic  r enorma l i za t ion  ca lcula t ions  
yield c~= -0 .013 ,  (2) c~=--0.04, (3) or  ct=--0.09, (4) a recent  M o n t e  Car lo  
r enorma l i za t ion  g roup  s tudy (s) ob ta ins  via the hypersca l ing  re la t ion 
e = - 0 . 0 6 4 ( 1 3 ) ,  and  exper iments  (6) are  consis tent  with e = - 0 . 0 9 ( 3 ) .  
Conven t iona l  M o n t e  Car lo  studies on the specific heat  suffer from the fact 
tha t  c~ is very small  and  that  the s ingular  behav io r  is p r o b a b l y  masked  by  
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nonsingular contributions or correction-to-scaling terms. As a result of the 
very small asymptotic critical temperature range for the specific heat, one 
must generate much highly accurate data very close to T c for very large 
systems, which is aggravated by relaxation times increasing drastically with 
dilution. Therefore, Heuer (7~ has calculated in his Monte Carlo study 
not from the specific heat, but via the Rushbrook relation, yielding 

= -0.16(4). 
This paper represents an attempt to calculate ~ directly from Monte 

Carlo data for the specific heat C, for the diluted simple cubic nearest- 
neighbor Ising model (concentration x = 0 ,  0.2, and 0.4 of nonmagnetic 
sites). However, instead of analyzing the temperature dependence of C for 
a very narrow temperature range around Tc and a very big system, with 
all the uncertainties discussed above, we calculate the maximum (peak) 
Cm,x as a function of the system size (linear dimension L) and determine 

from a finite-size scaling analysis. To obtain C . . . .  we do not perform a 
conventional Monte Carlo simulation at various temperatures, but we 
apply the Ferrenberg-Swendsen algorithm (8) which allows one to calculate 
Cmax very accurately from one Monte Carlo run at one temperature, if this 
temperature is close enough to the peak temperature Tma • (see below). 

The basic equation for the analysis is the finite-size scaling relation ~ 

(Cma x - B )  ~ L u/v ( 1 )  

Because this relation holds strictly only asymptotically in the limit L ~ 0% 
we must consider rather large system sizes, and we have used L = 8, 16, 32, 
and 64. This requirement to have large systems in order to penetrate the 
asymptotic finite-size scaling regime replaces the necessity to consider 
temperatures very close to T c in a conventional analysis of C(T). The 
quantity v is the critical exponent of the correlation length. For  the pure 
system (x = 0) we insert v = 0.63, (2) whereas for the diluted systems a value 
of v = 0.688 is used as obtained by the Monte Carlo renormalization group 
calculation, (5) v=0.688(13). The constant B is an effective background 
coefficient ~1~ fitted so as to account approximately for the leading deviations 
from the asymptotic power law for C(T). The value of B depends on the 
fitting details, for instance, on the temperature range used for the fit. 
Accordingly, various numbers are given in the literature for the pure 
model for fitting above ( + )  and below ( - )  Tc, B + = - 1 . 2 4 2 ,  (m 
B+ = -1.6974, (1~ and B_ = -1.965. ~1~ We have performed the analysis 
for all these values of B(x = 0) as well as tentatively also for B = 0. For  the 
diluted system we insert 

B(x) = B(x = 0)(1 - x) (2) 
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with B ( x = 0 )  given by the above-discussed values. At least for small 
dilution this ansatz seems to be justified, because in this case the energy per 
spin of the diluted system at the critical temperature of the diluted system 
is at least very close (5~ to the energy per spin of the pure system at the 
critical temperature of the pure system. 

To calculate the specific heat, we first made a good estimate for the 
temperature Tm~x where the maximum of the specific heat of the finite 
system is located. For the large systems (L = 32, 64) we used the critical 
temperatures as obtained by the Monte Carlo renormalization group 
calculations, (5) for the small systems (L = 8, 16) the peak temperature was 
determined approximately by a conventional Monte Carlo simulation. We 
then performed a long Monte Carlo run at this (already rather accurate) 
estimate T~max of the peak temperature, and calculated the probability 
distribution (histogram) P(E, Tlax) for the energy E of the system in zero 
field. With this probability distribution we can calculate the specific heat at 
T~m~x according to the fluctuation-dissipation relation. Furthermore, we can 
in principle evaluate from P(E, 1 Tmax) according to ref. 8 the probability 
distribution P(E, T) and hence C(T) at any other temperature T, if we 
have determined with sufficient statistical accuracy P(E, T~max) for all 
energies E, i.e., also for the long tails up to the maximum and the minimum 
possible energy of the respective system. In practice, this requirement 
represents a serious limitation of the method for large numbers of spins, 
where the probability distribution at a given temperature is very sharply 
peaked at the most probable value. Then there is only a small overlap of 
the probability distribution for temperatures which are not very close to 
each other, and due to the generally poor statistics for the tails of 
these probability distributions the original single-histogram Ferrenberg- 
Swendsen algorithm yields erroneous results as soon as one goes further 
away from the simulation temperature. One way to overcome this problem 
is to use multiple-histogram methods. (12) However, because we have 

1 already a very good estimate Tin, x for the peak temperature, it is sufficient 
to calculate C(T) very close to T~a x by the single-histogram method in 
order to find a more accurate estimate 2 Tma x. The whole procedure is then 
repeated until the estimates T~n,~ converge to the real peak temperature 
Tmax (Table I). It turned out that for the big lattices (L=32 ,  64) the 
number n of iterations required was very small (n=  1, 2 for the pure 
systems, n = 3 for the diluted systems). 

To evaluate the histograms, the fully-vectorized multi-spin coding 
progam described in ref. 13 has been applied. At each temperature we have 
performed at least 1.5 x 10 6 Monte Carlo steps per spin, omitting the first 
5 x 105 steps for equilibration. 

As a representative example, Fig. 1 shows the finite-size scaling plot 
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Table I. The Peak Tempera ture  Tma X and Cma X for  Various Concentrat ions x of  
Nonmagnet ic  Sites and Var ious Linear Dimensions L of the System a 

L = 8  L =  16 L = 3 2  L = 6 4  

x = 0 . 0  
Tm.x 4.028 ( 3 ) 4.4560( 1 ) 4.4915( 1 ) 4.5060( 1 ) 
Cma ~ 1.521 2.261 2.866 3.442 

x = 0 . 2  
Tma x 3.2705(1) 3.4195(1) 3.4790(1) 3,4900(2) 
Cma x 1.051 1,358 1.551 1.475 

x = 0.4 
T~.x 2.181(3) 2.3725(1) 2.3980(1) 2.4135(2) 
Cma x 0.541 0.686 0.787 0,738 

~' Values of Tma ~ are in units of J / k  B, those of Cmax in units of N k  m 

for B ( x = 0 ) = - 1 . 6 9 7 4 .  (1~ For the pure system, the finite-size scaling 
regime is penetrated already for L >~ 16. We obtain a positive slope of the 
plot according to a positive ~, and for all nonzero values of B(x = 0) we 
find similar e values around 0.11 (Table II), in good agreement with the 
results of the field-theoretic renormalization. (2) It should be noted that this 

value for the pure system yields, via the hyperscaling relation ~ = 2 -  dr, 
the correlation exponent v = 0.63, in agreement with our above-assumed 
value. For diluted systems the slope changes from positive to negative with 
increasing L, indicating that the specific heat exponent is negative. In an 
earlier conventional Monte Carlo study of the site-diluted simple cubic 
Ising model (14) the system sizes L~<20 were too small to penetrate the 
asymptotic critical regime, and therefore this change of the slope for 
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Fig. 1. Finite-size scaling plot for Cmax(L), assuming B(x=0)=- -1 .6974 .  Here N = L  ~ 

denotes the total number of spins, and k~ is Boltzmann's constant. 
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Table II. The Specific Heat Exponent a for Various Concentrat ions x of  
Nonmagnet ic  Sites and Various Values of the Effective Background 

Coeff ic ient  B 0 = B ( x  = O) 

3( 

x B 0 = 0 B o = - -  1 . 2 4 2  B o = - -  1 . 6 9 7 4  B 0 = - -  1 . 9 6 5  

0 . 0  + 0 . 1 6 6  + 0 . 1 1 9  + 0 . 1 0 8  + 0 . 1 0 2  

0 . 2  - -  0 . 0 4 9  - 0 . 0 3 0  - -  0 . 0 2 6  - -  0 . 0 2 5  

0 . 4  - -  0 . 0 6 5  - -  0 . 0 3 3  - -  0 . 0 2 8  - -  0 . 0 2 6  

increasing L could not be observed. Assuming that we are in the scaling 
regime for L ~> 32 (which is of course not guaranteed and which could only 
be checked by very costly calculations for even larger lattices) we find the 
c~ values given in Table II. Within the uncertainties introduced, for 
instance, by the use of different effective background coefficients B (see 
above), we obtain for both concentrations x =  0.2 and x = 0 . 4  the same 
value of c~, i.e., ~ = -0.029(4),  which is closest to the value of ~ = -0 .04  
obtained by the k-space renormalization calculation of Newman and 
Riedel. (4) From the byperscaling relation we then obtain v=0.6763(13), 
consistent with the result v = 0.688(13) from the Monte Carlo renormaliza- 
tion calculation (5) which we have used in Eq. (1) for the diluted system. 
Formally, our result for v obtained from ~ seems to be considerably more 
accurate than the one from the Monte Carlo renormalization, which would 
give a rather large error limit for the exponent ~ = 2 -  dr, ~ = -0.064(39). 
However, one should take into account that our present result relies on the 
optimistic assumption that the scaling regime already has been reached for 
L ~> 32. Wang et al. (~5) obtained for x = 0.2 and L = 300 by a single-cluster 
Monte Carlo algorithm the exponents 7 = 1.36 _+ 0.04 and 7Iv = 2.00 _+ 0.01, 
yielding v = 0.680(17). This is consistent with the above-discussed results 
for v, and gives an estimate for ~ (via the hyperscaling relation) of 

= -0.04(5),  which is, within the rather large error limits, again consistent 
with our c~ value and with the renormalization calculation of Newman and 
Riedel. (4) 

To our knowledge this is the first time that the crossover from positive 
to negative e values upon dilution of the 3D Ising model could be 
demonstrated by Monte Carlo data for the specific heat. 
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